Every player wants to know what their chances are of getting a Bingo result on a single card, multiple cards, with more or less players, and so on and so forth. Unfortunately, the answer differs according to these factors and the type of game being played.
To give you a general idea of the type of odds you're up against, however, consider the following example: If there are 900 cards being played in a single game, and you're playing 9 of them, your odds of 'winning' are about 1%.
What we supplied, below, is a brief but informative breakdown of the probability of getting a Bingo result on one individual card with each successive call-out. So, this isn't your probability of 'winning', just the likelihood that an individual card will catch a Bingo after each successive call. For example, after 30 calls, there's a 14% chance a single player will have single-line Bingo, and 2% chance of hitting four corners.
We hope this helps at least a bit.
No. of Calls |
BINGO |
COVER ALL |
4 CORNERS |
1 |
0.00000000 |
0.00000000 |
0.00000000 |
2 |
0.00000000 |
0.00000000 |
0.00000000 |
3 |
0.00000000 |
0.00000000 |
0.00000000 |
4 |
0.00000329 |
0.00000000 |
0.00000082 |
5 |
0.00001692 |
0.00000000 |
0.00000411 |
6 |
0.00005215 |
0.00000000 |
0.00001234 |
7 |
0.00012492 |
0.00000000 |
0.00002880 |
8 |
0.00025632 |
0.00000000 |
0.00005759 |
9 |
0.00047305 |
0.00000000 |
0.00010367 |
10 |
0.00080783 |
0.00000000 |
0.00017278 |
11 |
0.00129986 |
0.00000000 |
0.00027150 |
12 |
0.00199521 |
0.00000000 |
0.00040726 |
13 |
0.00294715 |
0.00000000 |
0.00058826 |
14 |
0.00421648 |
0.00000000 |
0.00082356 |
15 |
0.00587167 |
0.00000000 |
0.00112304 |
16 |
0.00798905 |
0.00000000 |
0.00149739 |
17 |
0.01065272 |
0.00000000 |
0.00195812 |
18 |
0.01395440 |
0.00000000 |
0.00251759 |
19 |
0.01799309 |
0.00000000 |
0.00318894 |
20 |
0.02287445 |
0.00000000 |
0.00398618 |
21 |
0.02871003 |
0.00000000 |
0.00492410 |
22 |
0.03561614 |
0.00000000 |
0.00601835 |
23 |
0.04371249 |
0.00000000 |
0.00728537 |
24 |
0.05312045 |
0.00000000 |
0.00874244 |
25 |
0.06396106 |
0.00000000 |
0.01040767 |
26 |
0.07635261 |
0.00000000 |
0.01229997 |
27 |
0.09040799 |
0.00000000 |
0.01443910 |
28 |
0.10623163 |
0.00000000 |
0.01684561 |
29 |
0.12391628 |
0.00000000 |
0.01954091 |
30 |
0.14353947 |
0.00000000 |
0.02254720 |
31 |
0.16515993 |
0.00000000 |
0.02588753 |
32 |
0.18881391 |
0.00000000 |
0.02958575 |
33 |
0.21451154 |
0.00000000 |
0.03366654 |
34 |
0.24223348 |
0.00000000 |
0.03815542 |
35 |
0.27192783 |
0.00000000 |
0.04307870 |
36 |
0.30350759 |
0.00000000 |
0.04846353 |
37 |
0.33684876 |
0.00000000 |
0.05433790 |
38 |
0.37178933 |
0.00000000 |
0.06073059 |
39 |
0.40812916 |
0.00000000 |
0.06767123 |
40 |
0.44563111 |
0.00000000 |
0.07519026 |
41 |
0.48402328 |
0.00000001 |
0.08331894 |
42 |
0.52300269 |
0.00000001 |
0.09208935 |
43 |
0.56224021 |
0.00000003 |
0.10153441 |
44 |
0.60138685 |
0.00000007 |
0.11168785 |
45 |
0.64008123 |
0.00000015 |
0.12258423 |
46 |
0.67795818 |
0.00000031 |
0.13425892 |
47 |
0.71465810 |
0.00000063 |
0.14674812 |
48 |
0.74983686 |
0.00000125 |
0.16008886 |
49 |
0.78317588 |
0.00000245 |
0.17431898 |
50 |
0.81439191 |
0.00000472 |
0.18947715 |
51 |
0.84324614 |
0.00000891 |
0.20560286 |
52 |
0.86955207 |
0.00001654 |
0.22273644 |
53 |
0.89318170 |
0.00003023 |
0.24091900 |
54 |
0.91406974 |
0.00005441 |
0.26019252 |
55 |
0.93221528 |
0.00009654 |
0.28059978 |
56 |
0.94768080 |
0.00016894 |
0.30218438 |
57 |
0.96058846 |
0.00029180 |
0.32499074 |
58 |
0.97111353 |
0.00049778 |
0.34906413 |
59 |
0.97947539 |
0.00083912 |
0.37445061 |
60 |
0.98592639 |
0.00139853 |
0.40119709 |
61 |
0.99073928 |
0.00230569 |
0.42935127 |
62 |
0.99419379 |
0.00376192 |
0.45896170 |
63 |
0.99656346 |
0.00607694 |
0.49007775 |
64 |
0.99810354 |
0.00972311 |
0.52274960 |
65 |
0.99904080 |
0.01541468 |
0.55702826 |
66 |
0.99956626 |
0.02422308 |
0.59296557 |
67 |
0.99983122 |
0.03774293 |
0.63061418 |
68 |
0.99994699 |
0.05832999 |
0.67002756 |
69 |
0.99998812 |
0.08943931 |
0.71126003 |
70 |
0.99999861 |
0.13610330 |
0.75436670 |
71 |
1.00000000 |
0.20560286 |
0.79940351 |
72 |
1.00000000 |
0.30840429 |
0.84642725 |
73 |
1.00000000 |
0.45945946 |
0.89549550 |
74 |
1.00000000 |
0.68000000 |
0.94666667 |
75 |
1.00000000 |
1.00000000 |
1.00000000 |